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.J. W. Rouse, Jr. and J. A. Schell
Texas A&M University

ABSTRACT - Analysis of 2.25 em wavelength
radar measurements of Arctic ice recorded by NASA
has shown that identification of several different
ice types is possible. The identification accom-
plished in this analysis depends almost entirely
upon radar return effects due to surface topography.
In laboratory tests using simulated radar data which
contained effects due to topography only, it was
found that near real-time identificaiton of some
ice types could be accomplished using a relatively
simple electronic network. This paper summarizes
the results of the analysis and describes the sys-
tem simulation.

A qualitative model for sea ice back-
scatter is proposed which emphasises surface topo-
graphy and near-surjface volumeiric scattering as
the dominant factors effecting the radar return.
The model, which incorporates recent experimental
results of depolarization dependence, suggests a
new approach to interpretation of radar backscatter
from sea ice.




RADAR STUDIES OF ARCTIC ICE

by
J. W. Rouse, Jr. and J. A. Schell

INTRODUCTION

The meésurements of radar backscatter obtained
by a National Aeronautics and Space Administration air-
craft in 1967 coﬁstitute one of the few known sets of
data available of a form and quality suitable for evalu-
ation of the capabiiity of éirborne radar to identify
;ea ice types. An analysis of these data by Rouse (1969)
clearly established the potential of ice tfpe identifi-
cation by radar. Subsequent studies at Texas A§M Univer-
sity confirmed these results and showed that data of
higher quality and greater variety, e.g. multi-frequency
multi-polarization, etc. was required before the full
potential of the sensor could be properly accessed.

The radar analysis, which is reviewed in this
paper, utilized properties of the backscatter predomi-
‘nantly determined by surface topography. The quality of
the data would not support conclusions based upon sur-
face composition changes, however such changes were cvi-

‘dent in the data as expected in view of the differcnces




in physical characteristics among vafious types of
sea ice. Incorporation of the dielectric propérties
of sea ice into the data analysis procedure is shown
to be the necessary next phase of the study.

The analysis effort utilized a variety of
statistical techniques in establishing the correla-
tion between the radar measurements and the sea ice
distributions. Some of these methods were of a form
adaptable to simple electronic analog computer net-
works. Thisylaboratoryvnetwork provided a means to
process the analog radar output signal for real-time
determination of certain ice types responsible for
the radar return. | -

Recent experimental observations of the
backscatter characteristics of cohergnt light con-.
dﬁcted by Leader (1970) suggest a new scattering
model adaptable to sea ice studies. The most signi-
ficant property of this model is the high degree of
dependence of the depolarized backscatter upon die-
lectric properties of a scattering volume near the
surface. The salt-water ice attenuation studies by
Hoekstra (1969) have already established that the
"layer" model commonly used for analysis of fresh-

water ice backscatter is inappropriate for sea ice.




A volumetric scatter model which incorporates rough
surface scatter and inhomogeneous volume scatter is

suggested. 
ARCTIC ICE RADAR RETURN

In May, 1967, the NASA 927 P3A (Electra)
remote sensor aircraft flew repeated missions near
Pt. Barrow, Alaska, to record data from Arctic ice.
- The primary flights were over selected lines at Pt.
ABarrow, which were established and documented by
bRRBL personnel (headed by J. McLérran) and Arctic
institute personﬁel,}and over two lines located
approximately 150 nm north—ﬂortheast of Pt. Barrow.
One of these lines was documented by a Navy Ocean-
ographic“Office team Cheaded by R. D. Ketchum) camped
at the site. 1In addition, several lines were selected
at random during the flights. The data collected in-
clpded black-and-white photography, color IR photography,
X-band radiometer images, IR images, and 2;25—cm radar
scatterometer measurements. Due to the extreme cloud

cover experienced daily during the mission, much of

the photography and imagery is degraded; however, the




radar data are reasonably good, and constitute the
most highly controlled radar measurements of Arctic
ice known to exist.

Radar scatterometers measure variation of
the scattering coefficient éf surfaces with incidence
angle. Scatterometer measurements permit a more de-
tailed observation of radar scattering behavior than
radar images, although the resolution and area cov-
erage are poorer. The NASA scatterometer used in
this measurement program was a 2.25 cm wavelength
Ryan Redop system. This radar transmits a vertical-
polarizatioﬁ CW signal in a '"fan-beam'" antenna pat-
tern. The illuminated area is 120° (%60°) fore-aft
along'thé aircraft flight.line and 3° (+1.5°) port-
‘starboard. | |

Thelradar return was recorded on magnetié
tape and sﬁbsequently processed through a set of
Doppler filters. Each filter represented a discrete
incidence aﬁgle within the 0°-to0-60° (fore and éft)
beam, e.g., 2.5°, 7.2°, 15°, 25°, etc. The filter
frequencies correspond to the incidence angle accord-

ing to the relation

£ = 2vsin® . (1)




where: £, = Doppler frequency shift

relative velocity of radar

= incidence angle

> o9 o
it

= wavelength
Since the entire 120° x 3° region is continuously il-
luminated, the enfire scattefing coefficient versus
incidence angle curve fdre and aft is recorded during
a single overflight. By suitable processing of the
return signal, a scattering coefficient versus inci-
dence angle plot was obtained which shows the scat-
tering coefficient variation for particular terrain
""cells'" along the flight line. This is done by de-
1ayiné'in time the signal outputs of each Doppler filter.
By appropriate choice of each time delay, we obtainéd
the effect of viewing one spot on thé terrain from
several angles simultaneously. The data shown in this
paper are the scattering coefficients for adjacent
"cells" on the ice about 30 meters square. Since the
radar returns are recorded in quadrature, the fore-
beam and aft-beam data are separated. The results
shown here are fore-beam measurements only.

The radar scatterometry data analysis con-
centrated on three flight lines designated line 92,

line 94, and line 91.




Line 92

In Fig. 1 is shown absegment of line 92
located approximétely 150 nm north-northeast of Pt.
Barrow, Alaska. This segment consists of a large
multiyear ice floe (to the left of A), rough first-
year ice (region F), smooth first;year ice (regions
B and D), and two small multiyear pieces about 100
meters long (located at C and E). This line was
documented by a NAVOCEANO team camped on the old ice
floe. Their report shows the old ice floe to be sev-
eral years 1in age. It is well weathered, and the
hummoéks are well rounded. The peaks of the ridges
are bare ice, and the dep;essed areas contain Snow
varying in depth between 20 and éO cm. The first-
year ice has an average thickness of 1.35 meters and
is reasonably uniform. It is covered by numerous
scattered blocks of ice; however, the snow cover 1is
only 1-2 cm. The hummocking is mild, and most ridges
are less than 1 meter high, except in region F where
the hummocking is more dense. The pressure ridge

bordering the old ice floe is approximately 2 meters

high.




Line 94

In Fig. 2 is shown a segment of line 94
which is located parallel to line 92 and displaced
approximately 5 miles. The ice types and conditions
present in the line are similar to those described
in line 92. Referring to the photo mosaic, the prom-
inent boundaries are at B, which denotes a boundary
between ridged and smooth first-year ice; D, which
denotes a boundary between smooth first-year ice and
multiyear ice at an open water crack; I, which denotes
a boundary between multiyear ice and smooth first-year
ice; and K, which denotes a high pressure ridge di-
viding two sections of smecth first—year.ice.

The'radar‘scatterometer profile 1is labeled
to show‘the close Correlationydf the radar data with
the various ice areas. The high return sthn at K
is from a pressure ridge running through the first-
year ice. From the profile shown in Fig. 2 at 25°
incidence angle there is little differentiation be-
tween fhe area of pressure-ridged first-year ice
labeled K and the old region, D through I. However,

this region (D through I) was clearly delineated,




utilizing data from other angles, as is evident upon
examining the ¢ versus 8 plots for the different
regions. As an example, the scattering coefficient
from 7.2° and 51.7° incidence angleé are plotted
against each other in Fig. 3. The data indicated

on the graph by circles are from the old-ice section
(D through I). The triangles indicate data to the
right of the boundary at D, and the solid dots in-
dicate data to the left of the boundary at I. In
this graphical method of data comparison the returns
from the old ice form a set‘labeled 1 in Fig. 3. The
‘pointg in the region labeled 2 are from two large
pressure-ridge regions, cne at ﬁhe arca labeled A of
Fig. 2 and the other at K. The region labeled 3 of
Fig. 3 represents data from the very smooth first-
year ice to the left of K in Fig. 2. (Most of the
region is not shown on the air photo mosaic.) The
data in category 4 are from a combination of smooth

and mildly ridged first-year ice.




Line 91

The cateéories illustrated by Fig. 3 show
a clear differentiation of multiyear ice and areas of
major pressure ridging; however{ differentiation be-
tween smooth first-year ice. and mildly ridged first-
yéér ice is not sufficiently distinct to make positive
identification between types. Therefore, data from
a region of exclusively first-year ice were examined.
This segment (line 91) is shown in Fig. 4. From the
séatterometry data profile accompanying the photo
+mosaic it is evident that the ice-water boundaries
at A and F are cleariy shown. Likewise, the cracks
at area B are evideﬁt‘by'”spiking.” However, the
transition between Smooth first-year ice in areas C
through F is not as distinctl A boundary is noted
at C between smooth first-year ice and the crumbling
block structure at a major pressure ridge. Similarly,
the transition through the relatively large, smooth
ice section shown at D is evident in the scatterometry
data. Clearly, however, the sharp contrast noted in
Fig. 2 between old ice and first~yéar ice is not evi-
dént in Fig. 4, which consists only of first-year ice

in two states, smooth and ridged.
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Point-by-point comparison of the scattering
coefficient curves for three regions in each line
shown in Figs. 1, 2, and 4 indicates that the measure-
ments of the two regions of old ice in line 92 are in
good agreement. The distinction between ﬁhe return
from the old ice in line 94 and the region K return
is an approximate 3-dB difference in curves to 25°
with an increasing difference beyond 25°, and the two
regions of first-year ice in line 91 are very similar
except for the more rapid flattening of the curve for
ridged ice.

In Fig. 5 the scattering coefficient curves
for the first;year ice regions in lines 92 and 94 are
compared with the ridged first-year ice region in
:1line 91. The égreement, eépecially in shape, is good.
The smooth firét—year ice region in line 91 exhibifed
too great é.slope nearlthe vertical for good agreement
~with the results of lines 92 and 94. The first-year
ice in line 91 (region B) is very smooth relati?c to
the block-strewn first-year ice of the more northern
ice in lines 92 and 94. 1In Fig. 6 the multiyear ice
measurements of line 92 are compared withvthe multi-

year ice of line 94. The agreement is good to 35°.
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Thereafter the line 92 curves ére much higher for
both old-ice regions.

Visual comparison of the resulfs gives some
insight as fo the behavior of the return. Detailing
the comparisons as in Fig. 3 verifies thé."signature”
characteristics, and extending this approach to mul-
tiple angles, i.e., three- -and four-dimensional com-
parisons, further emphasizes ice type discrimination.
However, such approaches are quantitative, and a more

specific means of catégorizing is desired.
" CATEGORIZATION TECHNIQUES

It is evident from the quéntitative analysis
presented that fhe data have distinctive characteristics
associated with the ice type responsible for the radar
feturnﬁ There are numerous statistical techniques
which can be employed to categorize these features, of
which the following represent useful examples. These
techniquesbinclude a single variable method based on
a backscatter theory popularly known as the Kirchhoff
méthod, various empirical polynomials, general cluster
analysis, and pattern classification tecﬁniques using

minimum distance and Bayes maximum likelihood criteria.




Kirchhoff Method

One analysis teéhnique used was based on
the Kirchhoff method previously used by Rouse (1969)
and subsequently adapted for the computer by Eppes
(1969).. The technique consists of fitting a func-
tional relationship to the data.

The computer analysis technique used by
Eppes to fit the functional relationship was based
on the method of least squares, an application of
vprediction analysis as described by Wolberg (1967).
A set of parameters is iteratively adjusted so that
the sum of the meaﬁ—squareg error is a minimum.

The functional relatioﬁship used is obtained
from an equation developed by Hagfors (1964) using the
'Kirchhoff method of describing scattering energy from
surfaces whose characteristics are described byvan
exponential autocorrelation function. The relation

is:

0% = k log (cos“s + S sin28) (2)

=
il

where: o average scattering coefficient

<D
]

incidence angle from nadir

]
11

surface roughness factor
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In using this technique it is assumed that the surface
roughness factor S will have values charactefistic of
the surface types responsible for the radar returned.

Since the Kirchhoff equafion describes nor-
malized energy returned from an illuminafed surface in
db, falues of the scattering coefficient are expected
to be negative. This however is not always the case
for values determined for Mission 47. Average values
of 6% vary from line to line over similar ice typés as
mentioned»before and in many cases &alues for ¢ were
positive. The first values for the surface roughness
factor were obtained by normalizing each data cell to
its largest vaiue of o and then applying the fitting
program to find the best fit. This approéch would
generally categorize the shape of the curve and avoid
the.problem of dc shift. These values of the surface
roughness factor were determined for the first angles
" of each data cell (i.e. 2.5°, 3.0°, 7.0°, 15.0°, and
25.0°) and the average values of the surface roughness
factor for the training sets are tabulated as SRF in
Table 2 for the ice types shown in Table 1.

The large values of surface roughness factor
indicate a generally smoother surface. Thus, for exanmple,

the surface roughness factor obtained for water/new ice




in line 91‘is significantly larger than for the various
types of first year ice. |

In the lines where first year and multi-year
ice are preéent, it is apparent from the surface rough-
ness factor that the multi-year ice is rougher than
first year ice. This might indicate a more volumetric
roughness as previously considered. In comparison be-
tween first year types, types II and VI appear smoother
than the other types as expected; however, type II ice
has a smaller surface'roughness factor than type II.

Type I ice is broken fype IT ice, and due to large

 pieces holding together, its surface roughness factor

on an average is larger than would be apparent from
the photography. The trainingvregion for type III
appears to be slightly ridged,'and the snow appears
to have banked in that region. Thus, it is possible
that more volumetric scattering is apparent from the
type III ice.

In order to utilize the effect of the.average
shift in the data, the Kirchhoff equation described
previously was modified by the addition of a conétant.

Thus the modified Kirchhoff equation became

o = k log (cos®6 + S sin?8) + b (3




where: b = a constant

This equation was then fit, using the Eppes
analysis program, Qarying the two parameters S, the
surface roughness factdr, and b, the constant shift.
In order to get as broad an>averaging as possible,
the angles selected were 2.5°, 7.0°, 15.0°, 25.0°,
35.0°. These results are averaged for the training

sets and presented in Table 2 as SRF, and CON. The

clustering of these parameters is shown in Figures 7-9.

Polynomial Fit

~If was felt that an equation more suitable
for machine implemeﬁtation might be empirically found
to fit the daté. Since a linear system is most easily
built, the search fér functions to fiﬁ the data was
limited to linear polynomials. These polynomials were

selected so that their coefficients might describe

either the shift in the data due to changing dielectric

constant or the variations due to surface roughness.

The polynomials were also selectéd to fit the shape

of the average data curves. |
The polynomials selected for analysis were

tried on data (angles 7.0°, 15.0°, 25.0°, 35.0°, and

15
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51.0°) from line 894 to test their applicability and
closeness of fit. They are listed in Table 3 with
their average least squared error for the points in
line 94.

The coefficients of each polymonial were
presented on a cluster chart. The most significant
clustering occurred for Equation II between a and b
coefficients. This polynomial was subsequently se-
lected for analysis of each line, and the clustering
is shown in Figures 10-12. Average values for the

training sets are shown in Table 4.

Pattern Classification

Pattern classificatidn techniques are being
:used in many fields of study to identify objects and
their parameters from multi-dimensional measurements.
The measurements of the parameter which uniquely
characterize an object constitute a signature by which
the object can be identified. Similar objects can be
distinguished by the characteristics in which they
differ. '

The intellectual tasks of>learning and com-

paring must be mechanized so that a machine has the
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ability to learn signatures. it must also be able to
compare and sort new data according to the identity of
the object presented. In order to aCcomélish these
tasks, a_mathematical model or machine is developed so
.that each new data set (or pattern) is compared with
previous knowledge and the machine responds with the
correct classification.

One way of accomplishing this identification
is the development of discriminant functions from meas-
urements of known objects. Two essential properties
of these functions are that they must be real and sin-
gle valued and that the value of the discriminant func-
tien corresponding to thé-corroct class classification
for a particﬁlar pattern must have the largest value
cdmpared to other values of discriminant functions for

.that pattern. Thus a data point is classified as be-
llonging to the category whose discriminant function
is largest for that data point.

Since linear functions are generally simple
to implement, several commonly used discriminant
functions were selected to analyze the scatterometer
data. The first discriminant function selected was

based on the maximum-likelihood or Bayes decision cri-
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teria. This apprcach assigns the pattern to the cate-
gory for which the probability of the pattern occurring
for that category is greafest. This method assumes that
the probability density function is known. Discriminant
functions are expressed in terms of these probability
functions and their parameters.

The most commonly used classifier of this
type is developed from multivariate Gaussian distri-
bution where each category is assumed equally probable.
The means and variances of these distributions are as-
sumed to be the means and variances éf the fraining sets
(data~for which the classification is assumed or known) . -

: j
In this case the discriminant function becomes:
|

g; () = log pj-7 log 12]-3 [x-M17 270 [X-m;] (&)

is the n-dimensional pattern

where: X =
gi(X) = is the discriminant function of the ith
category _
p; = is the probability of the occurrence of

the ith category

Mi = mean pattern of the ith category training
set

and I = is the covariance matrix of the training
set
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The second discriminant function selected was
based on the minimum distance criteria. In this case
the mean values of the pattern vectors are computed for
each category. A pattern is then assigned to the cate-
gory to which it is closest (in some sense) to the mean.
In this case the normal Euclidian concept of distance
was used and the discriminant function subsequently
becomes

s vep 1o, .
g; (X) = X-P.-5 P, P, (5

‘where: Pi is the mean value of the training set and
‘ gi(X) and X are the discriminant function and
pattern as before. '

These two classification algorithms were tried
on the data with the sets which were classified from the
ground photography taken as training sets. The resultant
‘classification of the data was compared with the ground
photography mosaics. The minimum distance technique
worked well in élaséifying all of the lines. The Bayes
criteria however, failed in the classification because
of the strong éorrelation between the data at each angle.
The use of this particular technique was abandoned in

favor of the minimum distance criteria in further iden-
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tification.. A disadvantage of the minimum distance
criteria is the weighting of the discriminant function
by the larger elements of the pattern.

It was not possible in general to obtain a
one-to-one correspondence between the data cells and
a point on the ground. Therefore, major homogeneous
areas were selected from the flight line and data
points from well within these boundaries were selected
for comparison. The results of classification in
these regions is shown in Table 5 where the total
number of points, those correctly classified, those
points clagsified in a related category (a first-
year type as another first-year type) and the num-

ber of grossly incorrect classification are listed.

Clustering Techniques

Several analyses were conducted in an at-
tempt to determine computed parameters which might be
used to distinguish ice types. These analyses con-
sisted essentially of selecting paramecters and pre-
senting them on a cluster plot to observe the degree
"of similarity in a class and the separation between

classes.
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Among the parameters investigated were sur-
face roughness factor, slope of a best-£fit line through
the data,. its zerd degree intercept and the average
value of the data. The best grouping and inter-clas-
sification separation occurred for the slope-average
Vélué plots which are présented in Figures 13-15.
Average values for the training sets are shown in
Table 6.

Several normallzatlon techniques were ap-
plled between lines in an attempt to reduce the ef-
fect of the data discrepancies. The most successful
of the techniques attempted was the normalization of
each line about a major ice category common to each.

In this case first-year ice was used, and it was noted
that the major classes separated sufficientiy to allow
gross classification by merély observing the’data. In
Figure 16 the cluster plot of the normalized slope and
average value are shown for the points frém the three
lines. In this normalization the average values of

the slope and average for fifst~year ice were determined
and these were subtracted from all the data points. The
three major categories Cluster wéll. Transition points

are those which fall outside of the major cluster. Due
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to the shortage of data from other lines and the em-
phasis on distinguishing variations within major cate-
gories, the normalization concepts were not developed
further.

Each of the analysis techniques applied was
successful, to varying degrees, in classifying major
groupings of ice Where the classification was limited
to the lines in whiéh the training was done. It ap-
peared from these analyses and from attempts at data
normalization that the dielectric shift as well as
the roughness characteristic were neéessary in the
classification of data.

One specific téchnique can not be singled
out as being far better than the others, because of
fhe limited nature of the data and the limited number
of data points per training set (particularly in types
of first-year ice) do not present a sufficiently broad
base upon which a decision could be founded. However,
the slope-average, modified Kirchhoff, and minimum
distance pattern classification techniques seem to
offer the best discrimination between subclasses in

the first-year ice.
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SCATTEROMETER SIGNAL PROCESSING

The radar scatterometer transmit a fan beam
v signal which is scattered by the terrain providing a
return signal to the radar which varies both in am-
plitude and frequency. This doppler frequency shift
is depéndent upon the velocify of the aircraft, its
altitude and the angle at Whiéh the terrain cell is
viewed. The amplitude of the return depends upon the
angle of illumination and the complex interaction of
. the terrain and the radar signal. Thus the scatter
from the terrain for a specific angle occurs in the
received signal at a unique frequency and decoding of
'séatterOmeter data for an angle requires the separa-
tion of its particular ffeddency from the total return.
In present scatterometer systems the return
‘signal is processed so that it might be recorded on
magnetic tape. This is accomplished by a translation
of the return signal from the microwave frequencies to
the audio doppler shift frequencies which can bé con-
veniently recorded on magnetic tape. As a consequence
of this processing, the signals from the aft data cells

arc folded onto those from the fore cells. To enable
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the separation of the fore and aft data the return
signal is quadrature shifted and then frequency trans-
lated as above to provide a second output signai, thus
the output from the scatterometer system consists of
two channels of data at audio frequencies which are
subsequently recorded on magnetic tape.

The scatter at a particular angle can be ob-
tained by extracting the information from these channels
by filtering at the corresponding doppler frequency.
This filtering can be accomplished by either digital or
analog methods. By detecting and adding these doppler
~signals from the two channels, the fore data at the
specified angle can be extracted,

The set of data used to characterize a ground
data cell is the scatter ffom that cell at several an-
gles. To obtain this information forba data cell the
signals from the desired angles are time shifted so
that the returns from the cell align. These signals
are converted to values of the scattering coefficient
by application of the radar equationQ This set of scat-
tering coefficients is essentially the datg used for
" terrain characterization by airborne scatterometer meas-

urements,




CLASSIFILER SIMULATION

A simpléjsimulation of radar scatterometer
data was made using audio frequencies to test the fea-
sibility of a system scheme for the near real-time
identification of ice type. Scattering coefficients,
calculated from Mission 47 were encoded by amplitude
modulation of sinusoidal signals at simulated doppler
shift freduencies. These signals, representing the
return at several angéls, were summed to provide the
signal used to represent the scatterometer return sig-

* nal. This was recorded on analog magnetic tape.
Iﬁ'subseqUent processing, this signal was
filtered at the simulated doppler frequencies and these
outputs were magnitﬁde dctegted to present the back-
scatter return to the classifiéation system. The phases
of processing which include the shifting of the data,
the separation of fore and aft data and the subsequent
calculation of scattering coefficient were not attempted
at this time. The brimary purpose of the experiment was
to determine the relative worth of an analog classifica-

tion scheme.
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ANALOG IMPLEMENTATION

The analog circuitry was used here to perform
three basic functions. It provided the active portion
of the bandpass filters; it provided preliminary signal
processing resulting in classification parameters, and
it provided for implementation of the classification
algorithm. An analog approach was taken primarly be-
cause of the simplicity of the overall system scheme
-and the versatility of analog computation for the sol-
ution of linear equations. Other valid reasons for an
analog~implem¢ntation are the following:

a) nearly instantaneous computation

b) ease of parameter adjustment

c) compatability with analog outputs

d) easé in implementation of integration.

Three basic analog circuits were used in
this experiment and are shown in Figure 17. The first
is the analog adder. As is depicted several signals,
in this case X1s Xg, and Xz are presented to the adder
A and the

network with variable coefficients A A

1> 72> 73

output is the lincar polynomial shown. The sccond cir-

cuit used is a band-pass filter which allows only a




' narrow Band of frequencies nearvits center frequency
fo to pass unattenuated. The third circiit, a com-
parator determines the sign of its input énd provides
. an 6utput voltage at V1 oT V2 accordingly. It is com-
binations of these three basic circuits which make up
the described systemn.

The classification portion of the identifi-
kcation system was implémented by the programming of
linear discrimination functions. This general class
of discriminant functions allows implementation over
a broad range of decision criteria. Among the per-
missible criteria are minimum distance to the mean,

aximum likelihood among'CQ*tain distributions, and
others for which the_discriminant function reduces to

a linear equation. |

This form of classification analysis calls

for division of the parameter space Ey hyperplanes into
the various sections containing the accumulation of
points belonging to the desired classes. This is ac-
complished in the case of two clésses'by programming

a linear function which has the value zero along the
boundary between the two classes. Thus if the function

evaluated at a point has a positive value, that point

27
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may be considered as belonging to one class, and to
the other if the value of the function is negative.
This 1is represenfed for two classes in Figure 18.
For a larger number of classification parameters or
classes this technique can be expanded by the addi-
tion of the appropriate logic circﬁitry.

In this simulation the minimum distance
to the mean was selected as the decision criteria and
vthe identification was restricted to two classes and
three dimensions. All data points producing a value
of the discriminant function greater than zero are
- classified as belonging to{class IT and.those pro-
ducing values of less than]zero are classified as be-
longing to class I. |

Values of the scattering coefficients were
taken frdm line 94 and the two classesvconsidered were
multi-year ice and first-year ice. Two procedures were
used in obtaining values for the classification para-
meters. In the first the actual values of the scat-
tering coefficients at several angles (7.2°, 15.0°,
25°) were used and the identification system essentially

compared the input scattering coefficient values with

the average scattering coefficients of the training sets.




' This is the implementation of the procedure described
in the proceeding section on Pattern Classification,

In the second procedure, the input scattering
coefficients were fit by a linear polynomial (Table 3,
IT). If the data angles and the polynomial are fixed,
and thc number of measurements is greater than the
number of terms of the polynomial, the determination
of the coefficients of the pciynomial (which is the
best least square fit to the data) reduces to the cal-
culation of a set of linear equations readily imple-

* mented on the analog computer; These coefficients
were then used as classification parameters.

In Figure 19 is shown the circuitry for the
classification procédure, The magnetic tape unit on
which the simulated signal waéirecorded appears on the
left. The signél from the recorder is passed through
filters and is detected to provide values for the scat-
tering coefficient at three angles. In the parameter
calculation section, three calculations are made to de-
termine the coefficients of the best fit of linear poif«
nomial. These coefficients are then presented as clas-
éification parémecers to the circuitry pfoviding the

discriminant implementation. The calculated value of
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the discriminant function is then presented to the
comparator which provides the driving voltage for the
classification indicators.

A number of data points were introduced to
the system in this manner to determine what degrada-
tions could be expected in an analog implementation
of a classifier. It was determined that the analog
system classified data as well as the corresponding
implementation on a general purpose digital computer
and that the major problem in this system is the de-
termination of a suitable identification algorithm
_for classification of ice types.

This simulation has shqwn that an analog
identification system for certain algorithms can be
built rather simply, at an expected lower expense
than a corrésponding digital system.h It has also
shown that the degradation of identification in an
analog system is not appreciably different than a
digital system-and depends primarily on the identi-

fication algorithim used.




QUANTITATIVE SEA ICE MODEL
|

A popula} model used to describe electromag-
netic scatter from sea ice has been the "Jayer" model
applicable to fresh water ice, with the addition of a
diffuse interface between the water and the underside
of the ice. For this model, the boundary values at
thé upper ice surface satisfy the descriptive equation,
i.e. the ice media is considered infinitely thick.
The attenuation measurements by Hoekstra suggest that
the ice-water boundary is seldom excited by incident
radar signals, except for very thin ice, and that the
near—surfacé volume!controls the scattering charac-
teristics. Following accépted practices of estimating
scattering behavior at én interface, the fact that the
attenuation of sea ice is higher than previously imagined
would not alter the approach, but would merely change
the reflection coefficient, hence altering the magni-
tude of the calculated radar cross scction.

Experimental data have bcen rcasonably well
fit using theory based upon such a model and elaborate
rationalization has been developed to justify its
case. However, recent experimental observations by

Leader (1970) suggest a somewhat different model which
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could have considerably importance to interpretation
of sea ice radar return.

Electromagnetic scatter theory for rough
surfaces has advanced rapidly in recent years. Several
different approaches had been advanced including the
popular Kirchhoff method (Beckmann and Spizichino 1964)
and the small perturbation technique (Rice 1951). The
Kirchhoff method generally fails to correctly estimate
backscatter from angles removed from the vertical.

The small perturbation method more accurately predicts
the backscatter from the mid-angles, but fails near the
nadir and the'assumptions about the nature of the rough
surface are difficult to substantiate for natural ter-
~rain. One of the most unexﬁlainable characteristics of
the Kirchhoff method is that it cannot account for‘any
significaandepolarized component in the backscatter
direction. The small perturbation does predict a de-
polarization component caused by a surface scatfering
phenomena. The merger of these two techniques using a
composite surface concept (Semyonov, 1966; Fung and
Chan, 1969; Wright, 1968) have proven verfrsuccessful
for explaining scveral previously unmanagéah]o char-

acteristics of radar mecasurements of natural surfaces.
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In the context of radar studies of Arctic
ice, the development of these general scattering
theories should improve the ability to reiate back-
scatter measurements to surface parameters. Unfor-
tunately, only surface parameters have appreciable
effect on the theoretically predicted behavior of the
radar return. Ideally the very distinctive character
of the near-surface volume of ice would be influential
in the scattering behavior. The nonhomogeneous, an-
isotropic upper volume of sea ice is highly type or

age dependent and, if recordéd in the radar backscatter,
it shoﬁid substantially improve the ice type identifi-
cation capabiiity of the sensor.

The coherent optics experiments by Leader
provide strong evidence that the general scattering
theories discussed above are inadequate for predicting
sea ice backscatter, especially for the depolarized
component. Leader showed that a theory based on the
Kirchhoff-Huygens principle can satisfactorily estimate
scatter from a wide range of rough surfaces; More im-
portantly, his work established that the Kirchhoff method
correctly predicted the lack of ahy significant depolar-

ization of the scatter in the plane of incidence. This



phase of the experiment employed an optically '"black"
sufface for which there were no contributions from the
volume, i.e. the scatter was completely surface depen-
dent. In a subsequent test using the same surface
roughness on a material for which a Voiume scatter
component did exist, a depolarization component did
exist. In addition, he showed that by subtracting the
depolarized scatter energy from the polarized scatter
energy, the results matched those previously recorded
for the '"black" material. It was conclﬁded that the
depolarized component was the result of a near-surface
volumetric scattering phenpmenon. | |

| This feature is not 1ncorporated into any of
the general rough surface scatter theories and consid-
erably more experimentation will be required before an
appropriate description is possible. However, the rec-
ognition of the potential existance of a strongly ma-
terial related component in the radar return offérs a
new approach to interpretation of radar backscatter

measurements of sea ice.
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CONCLUSION

Using the angular dependence characteristics,
a predominately topography related parameter, of 2.25 cm
wavelength backscatter from Arctic ice, identification
of certain sea ice by fype is possible. Several data
analysis techniques developed to establish the backscat-
ter correspondence to sea ice type are amenable to sim-
" ple electronic hardware implementation which offer the
potentiai for near real—time identification of specific
ice types? In addition, a new model, based on recent
laboratory experiments, indicates the poﬁential for im-
provéd radar identification of Arctic icé by'incorporw

ation of the depolarized component.
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TABLE 1

ICE TYPE DEFINITION

Surface

Broken First-Year Ice
Smdoth First-Year Ice

Snow Covered First-Year Ice
Water And/Or New Ice
Multi-Year Ice

Weathered, Snow-Covered First-Year Ice




TABLE 2

KIRCHHOFF EQUATION RESULTS

Type Line SRF SRE, CON
I 91 11.9 7.43 -2.80
IT 91 21.3 14.63 0.02
I 94 62.8 47.67 0.44
11T 91 6.1 5.72 -3.54
IV 91 76.6 63.14 7. 46
v 92 16.1 10.05 -3.91
v 94 30.7 14.70 1.45
VI 91 25.4 15.37 0.10
1 23.80 -6.11

VI 92 37.




IT,
11T,

TABLE 3

POLYNOMIAL FITS

0

Polynomial

f(8) = a + be + ce2 |
f(0) = a + be ! + co?
£(8) = a + blnd + ce6
£(6) =a + beo'4 + c8

.9

Average Error

1.090 db
1 0.314 db
0.673 db
0.525 db



TABLE 4
PARAMETER AVERAGES

g% = A + Bo~! + Co2

Type Line A
1 91 -4.73
II 91 -5.30
II 94 -12.01

ITI 91 -3.49
IV 91 -8.64
Y 92 -3.74
\' .94 -9.15
VI 91 -6.60

VI 92 -17.00

joo

15.
48.
-11.
89.
12.

29.
55.

*
O RN U o ©N




PATTERN CLASSIFICATION RESULTS

Line 91

Type I (F)
Type II (F)
Type III (F)
Type IV (W)
Type VI (F)

Line 92
_ Type V (M)
Type VI (F)

Line 94
Type II (F)
Type V (M)

W - Water
F - First-Year
M - Multi-Year

TABLE §

Related

No. ‘

Pts. Correct
11 8
S 4
3
20 18
8 7
40 40
10 10
12 . 12
17 17

Tyvne Incorrect
3 0
1 0
2 0
0 2
1 0
0
0
0
0




TABLE 6
AVERAGE VALUES
SLOPE- AVERAGE

Type Line Slope Averagé

91 -.166 7,77
IT 91 -.275 -8.07
IT 94 -.397 ~13.60
ITT 91 -.186 -7.73
v 91 -.550 -8.83
v 92 -.183 -9.74
v 94 -.273 -6.96
VI 91 -.244 -7.79

VI 92 -.254 -15.70



Air Photo Mosaic: Arctic Pack Ice, Beaufort Sea, 15 May 1967, line 92
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